Using Machine Learning to Complement and Extend the Accuracy of UXO Discrimination Beyond the Best Reported Results of the Jefferson Proving Ground Technology Demonstration

نویسندگان

  • Larry M. Deschaine
  • Richard A. Hoover
  • Joseph N. Skibinski
  • Janardan J. Patel
  • Frank D. Francone
  • Peter Nordin
چکیده

The accurate discrimination of unexploded ordnance from geophysical signals is very difficult. Research has demonstrated that using a machine learning technique known as linear genetic programming in concert with human expertise can extend the accuracy of unexploded ordnance discrimination past currently published results. This paper describes how linear genetic programming offers the promise of creating real-time unexploded ordnance discrimination.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatiotemporal Estimation of PM2.5 Concentration Using Remotely Sensed Data, Machine Learning, and Optimization Algorithms

PM 2.5 (particles <2.5 μm in aerodynamic diameter) can be measured by ground station data in urban areas, but the number of these stations and their geographical coverage is limited. Therefore, these data are not adequate for calculating concentrations of Pm2.5 over a large urban area. This study aims to use Aerosol Optical Depth (AOD) satellite images and meteorological data from 2014 to 2017 ...

متن کامل

Advanced machine learning methods for wind erosion monitoring in southern Iran

Extended abstract Introduction Wind erosion is one the most important factors of land degradation in the arid and semi-arid areas and it is one the most serious environmental problems in the world. In Fars province, 17 cities are prone to wind erosion and are considered as critical zones of wind erosion. One of the most important factors in soil wind erosion is land use/cover change. T...

متن کامل

Genetic Programming for Discrimination of Buried Unexploded Ordnance (UXO)

According to the Department of Defense, over 10 million acres of land in the US need to be cleared of buried unexploded ordnance (UXO). Worldwide, UXO injures thousands each year. Cleanup costs are prohibitively expensive due to the difficulties in discriminating buried UXO from other inert non-UXO objects. Government agencies are actively searching for improved sensor methodologies to detect a...

متن کامل

Accuracy improvement of Best Scanline Search Algorithms for Object to Image Transformation of Linear Pushbroom Imagery

Unlike the frame type images, back-projection of ground points onto the 2D image space is not a straightforward process for the linear pushbroom imagery. In this type of images, best scanline search problem complicates image processing using Collinearity equation from computational point of view in order to achieve reliable exterior orientation parameters. In recent years, new best scanline sea...

متن کامل

Physics-based Data Fusion for Uxo Characterization

ENSCO, Inc. is investigating a novel approach to data fusion of magnetic and ground-penetrating radar (GPR) data to characterize previously detected buried targets. The method exploits a single model of the subsurface to predict both magnetic and GPR data observations. By determining the best single model that constrains both data sets, the optimum identification is computed. Using an a priori ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002